

A transfer learning based geometric position-driven machining error prediction method for different working conditions

Teng Zhang

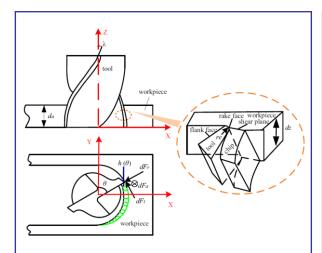
Joint work with Hao Sun, Lin Zhou, Shengqiang Zhao, Fangyu Peng*, Rong Yan

The National NC System Engineering Research Center,

School of Mechanical Science and Engineering

- **♦** Background
- **♦** Methodology
- **Experiment**
- **♦** Result and Analysis
- **◆** Conclusion and Future Work

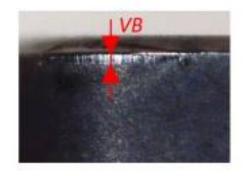
(Mechanism Modeling)



$$\begin{cases} dF_{tk}(\theta) = \left[K_{tc} h_k(\theta) + K_{te} \right] dz \\ dF_{rk}(\theta) = \left[K_{rc} h_k(\theta) + K_{re} \right] dz \\ dF_{ak}(\theta) = \left[K_{ac} h_k(\theta) + K_{ae} \right] dz \end{cases}$$

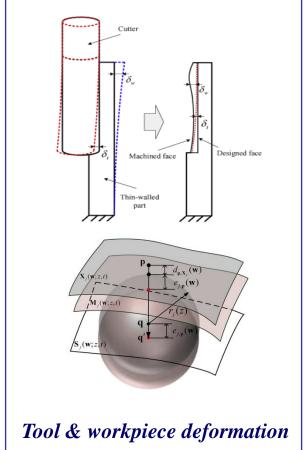
Cutting force Zhou et al. MTM 2015

TOOL Secondary Primary Tertiary FINAL WORKPIECE



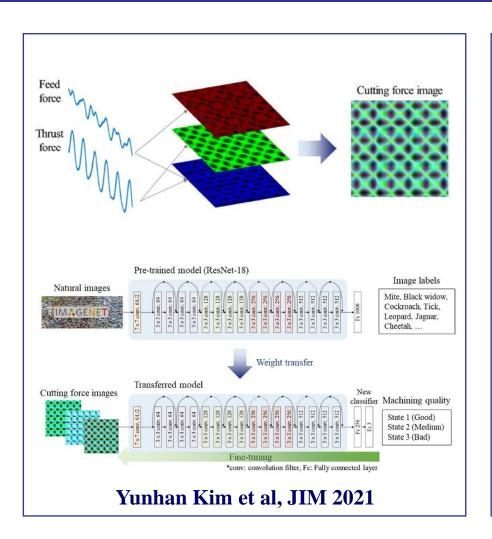
Tool wear

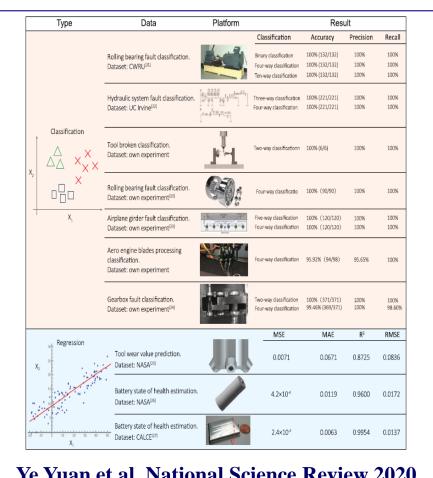
I. Urresti et al, CIRP 2021



Li Z L et al, PE 2019

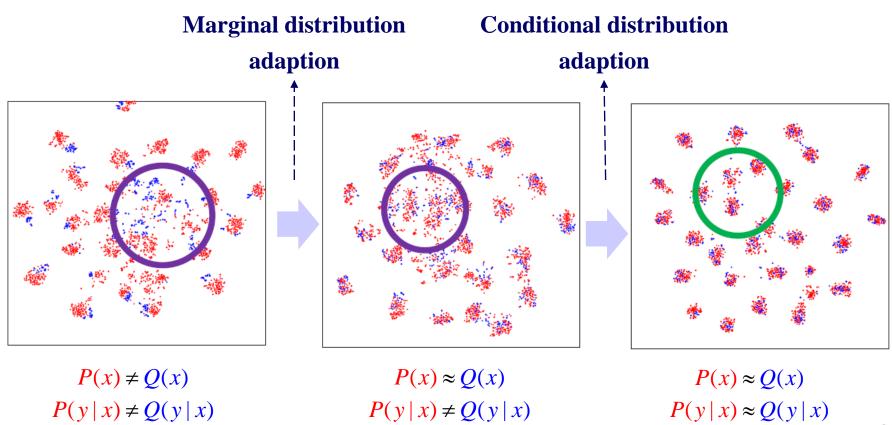
(Data-Driven)

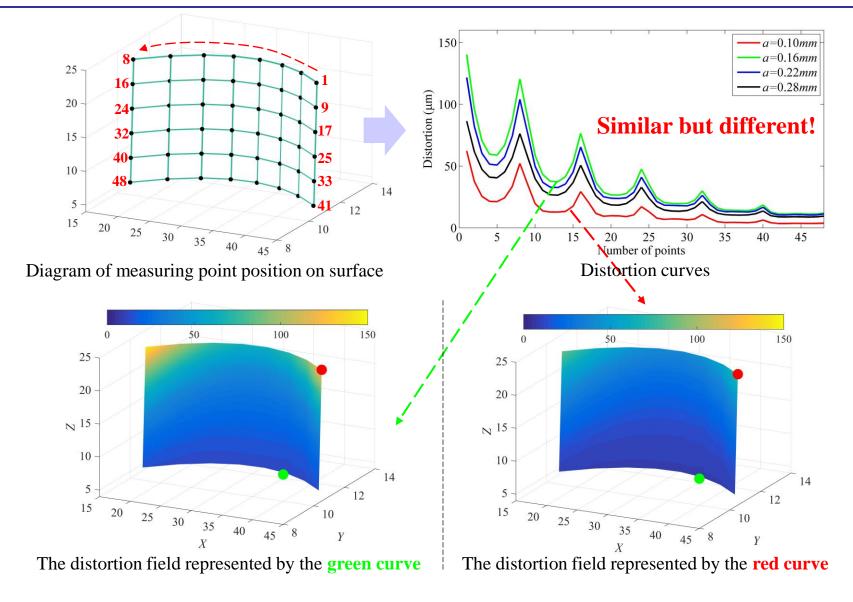




Ye Yuan et al, National Science Review 2020

Why transfer learning?→Different distribution (Domain Adaption)





- **♦** Background
- **♦** Methodology
- **Experiment**
- **♦** Result and Analysis
- **◆** Conclusion and Future Work

Methodology

Algorithm 1 TrAdaBoost.R2

Input: Source domain dataset χ^S with sample number n and target domain dataset χ^T with sample number m, the maximum number of iterations N, a base learner, and the initial weight of each sample $w_i^1 = 1/(n+m)$, $1 \le i \le (n+m)$;

For $e = 1, \dots, N$

Step 1. Train the learner to get a mapping relation: $f_e(x_i)$: $\chi \to \mathbb{R}$;

Step2. Calculate the training loss of each sample and obtain:

$$E_e = \max_{j=n+1}^{n+m} \|y_j - f_e(X_j)\|$$
 where $n+1 \le j \le n+m$,

$$e_i^e = \left| \frac{y_i - f_e(X_i)}{E_e} \right|$$
 where $n+1 \le i \le n+m$,

Step3. Calculate the weighted sum of sample weights: $\varepsilon_e = \sum_{i=n+1}^{n+m} e_i w_i^e$, . If $\varepsilon_e \ge 0.5$, then terminate the iteration and let N = e - 1.

Step4. Calculation $\beta_e = \varepsilon_e / (1 - \varepsilon_e)$, $\beta_s = 1/(1 + \sqrt{2 \ln n / N})$

Step5. Update the sample weight: $w_i^{e+1} = \begin{cases} \frac{w_i^e \beta_s^{e_i^e}}{Z_e} & 1 \le i \le n \\ \frac{w_i^e \beta_e^{-e_i^e}}{Z_e} & n+1 \le i \le n+m \end{cases}$

Where Z_e is the normalized constant, which satisfies $\sum_{i=1}^{n+m} w_i^{e+1} = 1$.

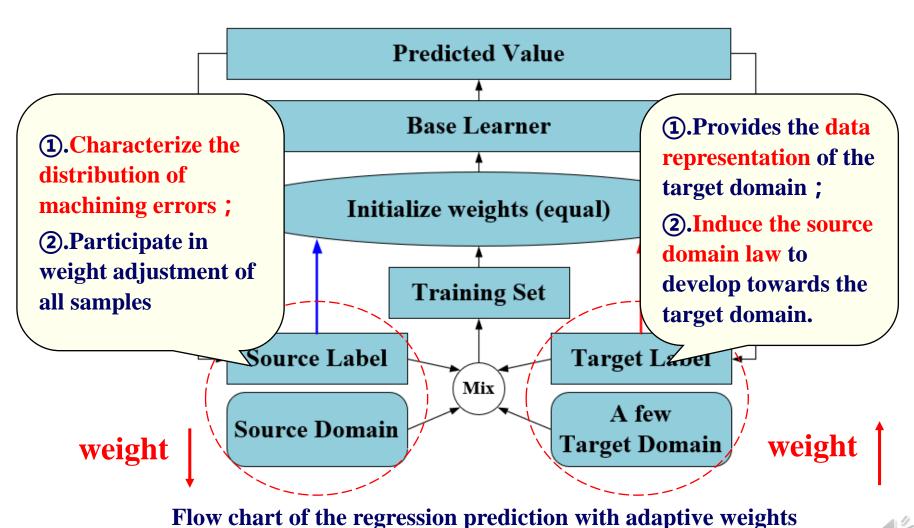
Output: The final mapping function $f_f(x)$ is the weighted summation expression of the learner $f_e(x)$. For the mapping function that meets the corner standard $\left\lceil \frac{N}{2} \right\rceil \le e \le N$, it is weighted as the coefficient $\ln(1/\beta_e)$.

- **1**Set uniform sample weight
- **②**Training base model
- **3**Obtain the maximum prediction error
- **4** Calculate the weighted sum of the weights
- **5**Compute two coefficients

$$\beta_e, \beta_s$$

- **6**Updata the sample weight
- **7**Learner weighted representation

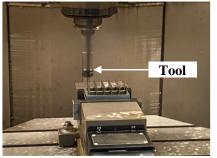
Methodology



- **♦** Background
- **♦** Methodology
- **Experiment**
- **♦** Result and Analysis
- **◆** Conclusion and Future Work

Experiment

♦ Milling experiment



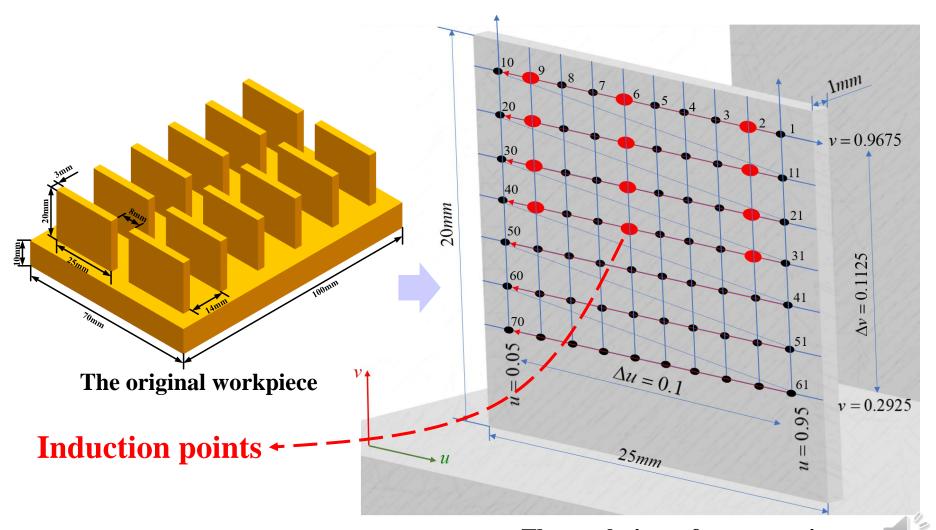
Rough & Semi-finish	SHANHELE 6×6DX4TX50L
Finish	SHANHELE 4×4DX4TX50L

♦ Processing parameters

	No.	Allowance (mm)	Feed per tooth (mm)	Cutting speed (m/min)	
Source	S 1	0.16	0.05	40	
	S2	0.18	0.05	50	
	S3	0.16	0.08	55	
	S4	0.18	0.08	40	
	S5	0.20	0.05	55	
	S 6	0.20	0.08	40	
	S 7	0.14	0.04	35	
	S8	0.22	0.09	60	
Target	T1	0.16	0.07	50	
	T2	0.18	0.07	55	
	Т3	0.20	0.07	50	
	T4	0.17	0.06	45	

Experiment

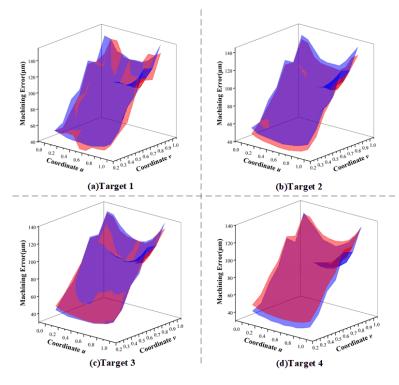
♦ The positions and path of each sampling point



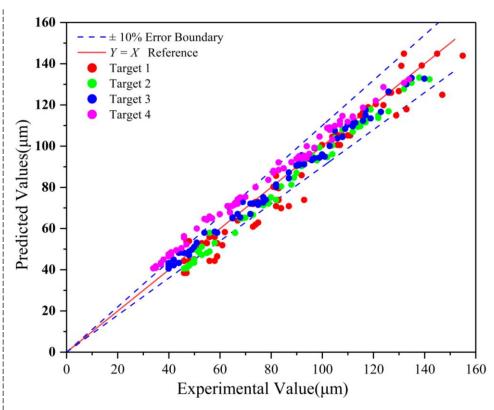
- **♦** Background
- **♦** Methodology
- **Experiment**
- **♦** Result and Analysis
- **◆** Conclusion and Future Work

Result and Analysis

◆ The prediction accuracy of the proposed method



Distribution of experimental and predicted machining errors of T-shaped thin plates in target domain



Comparison of experimental and predicted machining error values

Result and Analysis

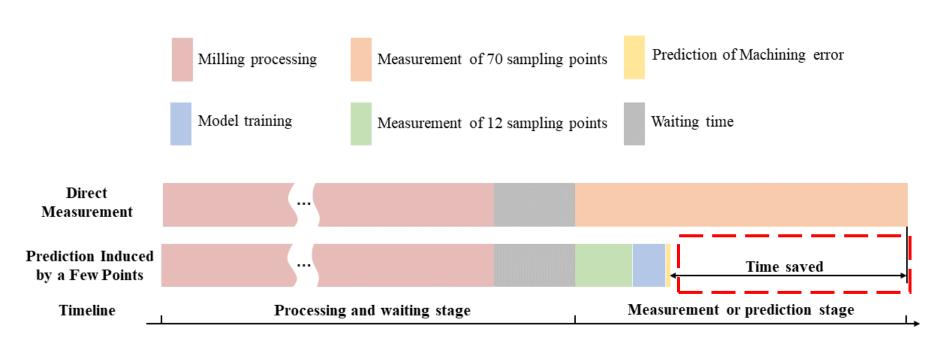
◆ Accuracy comparison of different methods

	GPR		SVR		This Paper	
	\mathbb{R}^2	RMSE (μm)	\mathbb{R}^2	RMSE (μm)	\mathbb{R}^2	RMSE (μm)
T1	0.79	13.55	0.66	17.26	0.94	7.55
T2	0.90	8.47	0.79	12.13	0.97	4.90
Т3	0.94	6.59	0.82	11.89	0.99	2.69
T4	0.90	8.79	0.77	13.33	0.95	6.13
Avg.	0.88	9.35	0.76	13.65	0.96	5.32

Sklearn is used to train GPR and SVR models. RBF is selected as the kernel function of the two models. Both models are automatically optimized under the default configuration.

Result and Analysis

◆ Evaluation of the efficiency of this method



Time/ sampling point \approx 4.3s.

Train & Test time

Direct Measurement: 4.3×70=301s

This Method: 4.3×12+13.36+0.0217=64.9817s

78%

- **♦** Background
- **♦** Methodology
- **Experiment**
- **♦** Result and Analysis
- **◆ Conclusion and Future Work**

Conclusion and Future Work

◆ Conclusion

- ➤ A sample-based transfer learning method driven by geometric position was Proposed.
- > The proposed model can predict the machining errors under different working conditions.
- > This method can reduce the reliance on time-consuming and expensive measurements, and improve the efficiency of obtaining machining errors.

Conclusion and Future Work

♦ Future Work

- > The influence of the position of the induction points on the prediction results will be studied.
- ➤ The prediction effect of the model on the machining errors of the workpiece with similar geometrical configuration but different scales will be studied.
- > The prediction of machining errors with larger differences will be studied, such as different materials, different tools, and different machine tools.
- ➤ The knowledge transfer and knowledge generalization in the manufacturing field will be deeply studied, and more complex experimental scenes will be promoted.

Conclusion and Future Work

- **♦** Acknowledgement
- > This research was financially supported by
- The National Key Research and Development Program of China (Grant No. 2018YFB1701904);
- National Natural Science Foundation of China (Grant No. 51625502);
- National Natural Science Foundation of China (Grant No. 51775213);

Thanks for listening! Question?

Email: zhang_teng@hust.edu.cn

Github: https://github.com/ZhangTeng-Hust

